



# Aerosol Particle Density Determination Using Light Scattering in Conjunction with Mass Spectrometry

Eben S. Cross<sup>1</sup>, Paul Davidovits<sup>1</sup>, John T. Jayne<sup>2</sup>, David K. Lewis<sup>2,3</sup>, Manjula Canagranata<sup>2</sup>, James Allan<sup>4</sup>, Doug Worsnop<sup>2</sup>, and Tim Onasch<sup>2</sup>

<sup>1</sup>Boston College, Chestnut Hill, MA 02467 <sup>2</sup>Aerodyne Research Inc. Billerica, MA 01810 <sup>3</sup>Connecticut College, New London, CT 06320 <sup>4</sup>The University of Manchester, Manchester M60 1QD UK

> ASP Meeting Boulder, CO October 25 – 27, 2006

Awknowledgements: NSF grant No. ATM-0525355. DOE grants No. DE-FG02-05ER63995 and No. DE-FG02-05ER84268. ESC funded by NASA Earth System Science graduate student fellowship

#### **Features of the LS-AMS**

- All particles that impact the vaporizer surface  $(d_p > 180 \text{ nm})$ , first pass through the laser beam and scatter light providing per particle measurements of scattered light  $(R_{LS})$ , vacuum aerodynamic diameter  $(d_{va})$  and chemical ion signal  $(R_{MS})$ . (Panel 1 and 2)
- Correlated  $R_{LS}$  (optical) and  $R_{MS}$  (chemical) measurements provide an in situ measurement of the collection efficiency of the AMS. (Panel 2)
- $R_{LS} d_p$  calibration curve allows the determination of an optical diameter  $(d_o)$ . (Panel 3)
  - Using a single species calibration curve for spherical particles  $d_p$  is determined to +/- 10% accuracy across the refractive index range of 1.41 < n < 1.60. (Panel 4)
- Combination of  $d_o$  and  $d_{va}$  provides a single particle density determination,  $\rho_{LS} = (d_{va}/d_o)$ .
- The LS-AMS per particle density determination allows the mixing state of the ambient aerosol particles to be analyzed.
- Single particle density ( $\rho_{LS}$ ) distributions obtained for ambient aerosol particles at Chebogue Point, Nova Scotia are highly correlated with the chemical composition-based density ( $\rho_{cc}$ ) and show that the ambient particles are internal mixed. (Panel 6 and 7)

#### **Schematic of the LS-AMS**



### Correlated $R_{LS}$ and $R_{MS}$ Signals



# **Experimental vs. Theoretical Scattering Response of the LS-AMS System**



## Effect of Refractive Index on $R_{LS}$



<sup>\*</sup>Note: n = real component to complex refractive index. Absorption component for oil droplets ( $k \sim 0$ )

#### LS-AMS Deployment: Ambient Aerosol Analysis



• Residence time of the aerosol particles in the atmosphere ~ days

Real-Time Determination of Chemical Composition,  $\rho_{cc}$  and  $\rho_{LS}$ 







Average Single Particle Density ( $\rho_{LS}$ ) (g/cm<sup>3</sup>)